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Abstract—To enjoy more social network services, users nowa-
days are usually involved in multiple online social networks
simultaneously. The shared users between different networks are
called anchor users, while the remaining unshared users are
named as non-anchor users. Connections between accounts of
anchor users in different networks are defined as anchor links and
networks partially aligned by anchor links can be represented
as partially aligned networks. In this paper, we want to predict
anchor links between partially aligned social networks, which
is formally defined as the partial network alignment problem.
The partial network alignment problem is very difficult to solve
because of the following two challenges: (1) the lack of general
features for anchor links, and (2) the “one − to − one≤” (one
to at most one) constraint on anchor links. To address these
two challenges, a new method PNA (Partial Network Aligner) is
proposed in this paper. PNA (1) extracts a set of explicit anchor
adjacency features and latent topological features for anchor links
based on the anchor meta path concept and tensor decomposition
techniques, and (2) utilizes the generic stable matching to identify
the non-anchor users to prune the redundant anchor links
attached to them. Extensive experiments conducted on two real-
world partially aligned social networks demonstrate that PNA
can solve the partial network alignment problem very well and
outperform all the other comparison methods with significant
advantages.

Index Terms—Partial Network Alignment; Multiple Heteroge-
neous Social Networks; Data Mining

I. INTRODUCTION

In recent years, online social networks providing various
featured services have become an essential part in our lives.
To enjoy more social network services, users nowadays are
usually involved in multiple online social networks simultane-
ously [14], [36], [37], [42] and there can be significant overlaps
of users shared by different networks. As pointed out in [6], by
the end of 2013, 42% of online adults are using multiple social
sites at the same time. For example, 93% of Instagram users
are involved in Facebook concurrently and 53% Twitter users
are using Instagram as well [19]. Formally, the common users
involved in different networks simultaneously are named as the
“anchor users” [14], while the remaining unshared users are
called the “non-anchor users” [42]. The connections between
accounts of anchor users in different networks are defined
as the “anchor links” [14] and networks partially aligned
by anchor links can be represented as “partially aligned
networks” [37].

Problem Studied: In this paper, we want to predict the anchor
links across partially aligned networks, which is formally
defined as the “partial network alignment” problem.

Partial network alignment problem is very important for
social networks and can be the prerequisite for many real-
world social applications, e.g., link prediction and recom-
mendations [36], [37], [42], [40], community detection [12],
[39], [41] and information diffusion [35]. Identifying accounts
of anchor users across networks provides the opportunity to
compose a more complete social graph with users’ information
in all the networks they are involved in. Information in the
complete social graph is helpful for a better understanding
of users’ social behavior in online social networks [14],
[41], [35]. In addition, via the predicted anchor links, cross-
platform information exchange enables new social networks
to start their services based on the rich data available in
other developed networks. The information transferred from
developed networks can help emerging networks [37], [39] to
overcome the information shortage problem promisingly [36],
[37], [39].

What’s more, the partial network alignment problem is
a novel problem and different from existing link prediction
works, like (1) traditional intra-network link prediction prob-
lems [26], [27], which mainly focus on predicting links in one
single social network, (2) inter-network link transfer problems
[37], which can predict links in one single network with
information from multiple aligned networks, and (3) inferring
anchor links across fully aligned networks [14], which aims
at predicting anchor links across fully aligned networks.

The inferring anchor links across fully aligned networks
problem [14] also studies the anchor link prediction problem.
However, both the problem setting and method proposed to
address the “network alignment” problem between two fully
aligned networks in [14] are very ad hoc and have many
disadvantages. First of all, the full alignment assumption of
social networks proposed in [14] is too strong as fully aligned
networks can hardly exist in the real world [42]. Secondly, the
features extracted for anchor links in [14] are proposed for
Foursquare and Twitter specifically, which can be hard to get
generalized to other networks. Thirdly, the classification based
link prediction algorithm used in [14] can suffer from the
class imbalance problem [16], [20]. The problem will be more
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serious when dealing with partially aligned networks. Finally,
the matching algorithm proposed in [14] is designed specially
for fully aligned networks and maps all users (including both
anchor and non-anchor users) from one network to another
network via the predicted anchor links, which will introduce
a large number of non-existing anchor links when applied in
the partial network alignment problem.

Totally different from the “inferring anchor links across
fully aligned networks” problem [14], we study a more general
network alignment problem in this paper. Firstly, networks
studied in this paper are partially aligned [42], which contain
large number of anchor and non-anchor users [42] at the
same time. Secondly, networks studied are not confined to
Foursquare and Twitter social networks. A minor revision
of the “partial network alignment” problem can be mapped
to many other existing tough problems, e.g., large biology
network alignment [1], entity resolution in database inte-
gration [2], ontology matching [7], and various types of
entity matching in online social networks [22]. Thirdly, the
class imbalance problem will be addressed via link sampling
effectively in the paper. Finally, the constraint on anchor
links is “one − to − one≤” (i.e., each user in one network
can be mapped to at most one user in another network).
Across partially aligned networks, only anchor users can be
connected by anchor links. Identifying the non-anchor users
from networks and pruning all the predicted potential anchor
links connected to them is a novel yet challenging problem.
The “one − to − one≤” constraint on anchor links can dis-
tinguish the “partial network alignment” problem from most
existing link prediction problems. For example, in traditional
link prediction and link transfer problems [26], [27], [37], the
constraint on links is “many-to-many”, while in the “anchor
link inference” problem [14] across fully aligned networks, the
constraint on anchor links is strict “one-to-one”.

To solve the “partial network alignment” problem, a new
method, PNA (Partial Network Aligner), is proposed in this
paper. PNA exploits the concept of anchor meta paths [42],
[26] and utilizes the tensor decomposition [21], [13] tech-
nique to obtain a set of explicit anchor adjacency features
and latent topological features. In addition, PNA generalizes
the traditional stable matching to support partially aligned
network through self-matching and partial stable matching
and introduces the a novel matching method, generic stable
matching, in this paper.

The rest of this paper is organized as follows. In Section II,
we will give the definition of some important concepts and for-
mulate the partial network alignment problem. PNA method
will be introduces in Sections III-IV. Section V is about
the experiments. Related works will be given in Section VI.
Finally, we conclude the paper in Section VII.

II. PROBLEM FORMULATION

Before introducing the method PNA, we will first define
some important concepts and formulate the partial network
alignment problem in this section.

A. Terminology Definition

Definition 1 (Heterogeneous Social Networks): A heteroge-
neous social network can be represented as G = (V, E), where
V =

⋃
i Vi contains the sets about various kinds of nodes,

while E =
⋃

j Ej is the set of different types of links among
nodes in V .
Definition 2 (Aligned Heterogeneous Social Networks): Social
networks that share common users are defined as the aligned
heterogeneous social networks, which can be represented as
G = (Gset, Aset), where Gset = (G(1), G(2), · · · , G(n))
is the set of n different heterogeneous social networks and
Aset = (A(1,2),A(1,3), · · · ,A((n−1),n)) is the sets of undi-
rected anchor links between networks in Gset.
Definition 3 (Anchor Link): Given two social networks G(i)

and G(j), link (u(i), v(j)) is an anchor link between G(i) and
G(j) iff (u(i) ∈ U (i)) ∧ (v(j) ∈ U (j)) ∧ (u(i) and v(j) are
accounts of the same user), where U (i) and U (j) are the user
sets of G(i) and G(j) respectively.
Definition 4 (Anchor Users and Non-anchor Users): Users
who are involved in two social networks, e.g., G(i) and G(j),
simultaneously are defined as the anchor users between G(i)

and G(j). Anchor users in G(i) between G(i) and G(j) can be
represented as U (i)

A(i,j) = {u(i)|u(i) ∈ U (i),∃v(j) ∈ U (j), and
(u(i), v(j)) ∈ A(i,j)}. Meanwhile, the non-anchor user in G(i)

between G(i) and G(j) are those who are involved in G(i) only
and can be represented as U (i)

−A(i,j) = U (i)−U (i)

A(i,j) . Similarly,
the anchor users and non-anchor users in G(j) between G(j)

and G(i) can be defined as U (j)

A(i,j) and U (j)

−A(i,j) respectively.
Definition 5 (Full Alignment, Partial Alignment and Isolated):
Given two social networks G(i) and G(j), if users in both
G(i) and G(j) are all anchor users, i.e., U (i) = U (i)

A(i,j) and
U (j) = U (j)

A(i,j) , then G(i) and G(j) are fully aligned; if users
in both of these two networks are all non-anchor users, i.e.,
U (i) = U (i)

−A(i,j) and U (j) = U (j)

−A(i,j) , then these two networks
are isolated; otherwise, they are partially aligned.
Definition 6 (Bridge Nodes): Besides users, many other kinds
of nodes can be shared between different networks, which are
defined as the bridge nodes in this paper. The bridge nodes
shared between G(i) and G(j) can be represented as B(i,j) =
{v|(v ∈ (V(i) − U (i))) ∧ (v ∈ (V(j) − U (j)))}.

The social networks studied in this paper can be any
partially aligned social networks and we use Foursquare,
Twitter as a example to illustrate the studied problem and the
proposed method. Users in both Foursquare and Twitter can
make friends with other users, write posts, which can contain
words, timestamps, and location checkins. In addition, users
in Foursquare can also create lists of locations that they have
visited/want to visit in the future. As a result, Foursquare and
Twitter can be represented as heterogeneous social network
G = (V, E). In Twitter V = U ∪ P ∪ W ∪ T ∪ L and in
Foursquare V = U ∪ P ∪ W ∪ T ∪ I ∪ L, where U , P , W ,
T , I and L are the nodes of users, posts, words, timestamps,
lists and locations. While in Twitter, the heterogeneous link
set E = Eu,u ∪ Eu,p ∪ Ep,w ∪ Ep,t ∪ Ep,l and in Foursquare
E = Eu,u∪Eu,p∪Ep,w∪Ep,t∪Ep,l∪Eu,i∪Ei,l. The bridge nodes



shared between Foursquare and Twitter include the common
locations, common words and common timestamps.

B. Problem Statement

Definition 7 (Partial Network Alignment): For any two given
partially aligned heterogeneous social networks, e.g., G =
((G(i), G(j)), (A(i,j))), part of the known anchor links be-
tween G(i) and G(j) are represented asA(i,j). Let U (i), U (j) be
the user sets of G(i) and G(j) respectively, the set of other po-
tential anchor links between G(i) and G(j) can be represented
as L(i,j) = {(u(i), v(j))|(u(i) ∈ U (i))∧ (v(j) ∈ U (j)}−A(i,j).
We solve the partial network alignment problem as a link
classification problem, where existing and non-existing anchor
links are labeled as “+1” and “-1” respectively. In this paper,
we aim at building a model M with the existing anchor links
A(i,j), which will be applied to predict potential anchor links
in L(i,j). In model M, we want to determine both labels and
existence probabilities of anchor links in L(i,j).

III. FEATURE EXTRACTION AND ANCHOR LINK
PREDICTION

Supervised link prediction method has been widely used
in research due to its excellent performance and the pro-
found supervised learning theoretical basis. In supervised link
prediction, links are labeled differently according to their
physical meanings, e.g., existing vs non-existent [42], friends
vs enemies [31], trust vs distrust [32], positive attitude vs
negative attitude [33]. With information in the networks, a
set of heterogeneous features can be extracted for links in the
training set, which together with the labels are used to build
the link prediction model M.

In this section, we will introduce different categories of
general features extracted for anchor links across partially
aligned networks, which include a set of explicit anchor
adjacency features based on anchor meta paths and the “latent
topological feature vector” extracted via anchor adjacency
tensor decomposition.

A. Traditional Intra-Network Meta Path

Traditional meta paths are mainly defined based on the
social network schema of one single network [26], [28].
Definition 8 (Social Network Schema): For a given network
G, its schema is defined as SG = (TG,RG), where TG and
RG are the sets of node types and link types in G respectively.
Definition 9 (Meta Path): Based on the schema of network G,
i.e., SG = (TG,RG), the traditional intra-network meta path in
G is defined as Φ = T1

R1−−→ T2
R2−−→ · · · Rk−1−−−→ Tk, where Ti ∈

TG, i ∈ {1, 2, · · · , k} and Rj ∈ RG, j ∈ {1, 2, · · · , k − 1}
[26], [28].

For example, according to the networks introduced in Sec-
tion II, we can define the network schema of Twitter as SG =
({User, Post,Word, T imestamp,List, Location}, {Follow,
Write, Create, Contain,At, Checkin}). Based on the
schema, “User - Location - User” is a meta path of length 2
connecting user nodes in the network via location node and
path “Alice - San Jose - Bob” is an instance of such meta
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Fig. 1. Schema of aligned heterogeneous network.

path in the network, where Alice, Bob and San Jose are the
users and location in the network.

B. Inter-Network Anchor Meta Path

Traditional Intra-network meta paths defined based on one
single network cannot be applied to address the inter-network
partial network alignment problem directly. To overcome such
a problem, in this subsection, we will define the concept of
anchor meta paths and introduce a set of inter-network anchor
meta paths [42] across partially aligned networks.
Definition 10 (Aligned Social Network Schema): Given the
partially aligned networks: G = (Gset, Aset), let SG(i) =
(TG(i) ,RG(i)) be the schema of network G(i) ∈ Gset, the
schema of partially aligned networks G can be defined as
SG = (

⋃
i TG(i) , (

⋃
iRG(i)) ∪ {Anchor}), where {Anchor}

is the anchor link type.
An example of the schema about two partially aligned

social networks, e.g., G(i) (e.g., Foursquare) and G(j) (e.g.,
Twitter), is shown in Figure 1, where the schema of these two
aligned networks are connected by the anchor link type and
the green dashed circles are the shared bridge nodes between
G(i) and G(j).
Definition 11 (AMP: Anchor Meta Path): Based on the aligned
social network schema, anchor meta paths connecting users
across G is defined to be Ψ = T1

R1−−→ T2
R2−−→ · · · Rk−1−−−→ Tk,

where T1 and Tk are the “User” node type in two par-
tially aligned social networks respectively. To differentiate
the anchor link type from other link types in the anchor
meta path, the direction of Ri in Ψ will be bidirectional if
Ri = Anchor, i ∈ {1, 2, · · · , k − 1}, i.e., Ti

Ri←→ Tj .
Via the instances of anchor meta paths, users across aligned

social networks can be extensively connected to each other.
In the two partially aligned social networks (e.g., G =
((G(i), G(j)), (A(i,j)))) studied in this paper, various anchor
meta paths from G(i) (i.e., Foursquare) and G(j) (i.e., Twitter)
can be defined as follows:

• Common Out Neighbor Anchor Meta Path (Ψ1): User(i)

follow−−−−→ User(i) Anchor←−−−−→ User(j) follow←−−−− User(j) or
“U (i) → U (i) ↔ U (j) ← U (j)” for short.



• Common In Neighbor Anchor Meta Path (Ψ2): User(i)

follow←−−−− User(i) Anchor←−−−−→ User(j) follow−−−−→ User(j) or
“U (i) ← U (i) ↔ U (j) → U (j)” .

• Common Out In Neighbor Anchor Meta Path (Ψ3):
User(i) follow−−−−→ User(i) Anchor←−−−−→ User(j) follow−−−−→
User(j) or “U (i) → U (i) ↔ U (j) → U (j)”.

• Common In Out Neighbor Anchor Meta Path (Ψ4):
User(i) follow←−−−− User(i) Anchor←−−−−→ User(j) follow←−−−−
User(j) or “U (i) ← U (i) ↔ U (j) ← U (j)”.

These above anchor meta paths are all defined based
the “User” node type only across partially aligned social
networks. Furthermore, there can exist many other anchor
meta paths consisting of user node type and other bridge node
types from Foursquare to Twitter, e.g., Location, Word and
Timestamp.

• Common Location Checkin Anchor Meta Path 1 (Ψ5):
User(i) write−−−→ Post(i)

checkin at−−−−−−−→ Location
checkin at←−−−−−−−

Post(j) write←−−− User(j) or “U (i) → P(i) → L ← P(j) ←
U (j)”.

• Common Location Checkin Anchor Meta Path 2 (Ψ6):
User(i) create−−−−→ List(i)

contain−−−−−→ Location
checkin at←−−−−−−−

Post(j) write←−−− User(j) or “U (i) → I(i) → L ← P(j) ←
U (j)”.

• Common Timestamps Anchor Meta Path (Ψ7): User(i)

write−−−→ Post(i)
at−→ Time

at←− Post(j) write←−−− User(j) or
“U (i) → P(i) → T ← P(j) ← U (j)”.

• Common Word Usage Anchor Meta Path (Ψ8): User(i)

write−−−→ Post(i)
contain−−−−−→ Word

contain←−−−−− Post(j) write←−−−
User(j) or “U (i) → P(i) →W ← P(j) ← U (j)”.

C. Explicit Anchor Adjacency Features

Based on the above defined anchor meta paths, different
kinds of anchor meta path based adjacency relationship can
be extracted from the network. In this paper, we define the
new concepts of anchor adjacency score, anchor adjacency
tensor and explicit anchor adjacency features to describe
such relationships among users across partially aligned social
networks.
Definition 12 (Anchor Meta Path Instance): Based on anchor
meta path Ψ = T1

R1−−→ T2
R2−−→ · · · Rk−1−−−→ Tk, path ψ =

n1 − n2 − · · · − nk−1 − nk is an instance of Ψ iff ni is an
instance of node type Ti, i ∈ {1, 2, · · · , k} and (ni, ni+1) is
an instance of link type Ri, ∀i ∈ {1, 2, · · · , k − 1}.
Definition 13 (AAS: Anchor Adjacency Score): The anchor
adjacency score is quantified as the number of anchor meta
path instances of various anchor meta paths connecting users
across networks. The anchor adjacency score between u(i) ∈
U (i) and v(j) ∈ U (j) based on meta path Ψ is defined as:

AASΨ(u(i), v(j)) =
∣∣∣{ψ|(ψ ∈ Ψ) ∧ (u(i) ∈ T1) ∧ (v(j) ∈ Tk)}

∣∣∣ ,
where path ψ starts and ends with node types T1 and Tk
respectively and ψ ∈ Ψ denotes that ψ is a path instance
of meta path Ψ.

The anchor adjacency scores among all users across par-
tially aligned networks can be stored in the anchor adjacency
matrix as follows.
Definition 14 (AAM: Anchor Adjacency Matrix): Given a
certain anchor meta path, Ψ, the anchor adjacency matrix
between Gi and Gj can be defined as AΨ ∈ N|U(i)|×|U(j)|

and A(l,m) = AASΨ(u
(i)
l , u

(j)
m ), u

(i)
l ∈ U (i), u

(j)
m ∈ U (j).

Multiple anchor adjacency matrix can be grouped together
to form a high-order tensor. A tensor is a multidimensional
array and an N-order tensor is an element of the tensor product
of N vector spaces, each of which can have its own coordinate
system. As a result, an 1-order tensor is a vector, a 2-order
tensor is a matrix and tensors of three or higher order are
called the higher-order tensor [13], [21].
Definition 15 (AAT: Anchor Adjacency Tensor): Based on
meta paths in {Ψ1,Ψ2, · · · ,Ψ8}, we can obtain a set of anchor
adjacency matrices between users in two partially aligned
networks to be {AΨ1

,AΨ2
, · · · ,AΨ8

}. With {AΨ1
, AΨ2

,
· · · , AΨ8

}, we can construct a 3-order anchor adjacency
tensor X ∈ R|U(i)|×|U(j)|×8, where the ith layer of X is the
anchor adjacency matrix based on anchor meta path Ψi, i.e.,
X (:, :, i) = AΨi

, i ∈ {1, 2, · · · , 8}.
Based on the anchor adjacency tensor, a set of explicit

anchor adjacency features can be extracted for anchor links
across partially aligned social networks.
Definition 16 (EAAF: Explicit Anchor Adjacency Features):
For a certain anchor link (u

(i)
l , u

(j)
m ), the explicit anchor adja-

cency feature vectors extracted based on the anchor adjacency
tensor X can be represented as x = [x1, x2, · · · , x8] (i.e., the
anchor adjacency scores between u

(i)
l and u

(j)
m based on 8

different anchor meta paths), where xk = X (l,m, k), k ∈
{1, 2, · · · , 8}.

D. Latent Topological Feature Vectors Extraction

Explicit anchor adjacency features can express manifest
properties of the connections across partially aligned networks
and are the explicit topological features. Besides explicit topo-
logical connections, there can also exist some hidden common
connection patterns [33] across partially aligned networks. In
this paper, we also propose to extract the latent topological
feature vectors from the anchor adjacency tensor.

As proposed in [13], [21], a higher-order tensor can be
decomposed into a core tensor, e.g., G, multiplied by a matrix
along each mode, e.g., A,B, · · · ,Z, with various tensor
decomposition methods, e.g., Tucker decomposition [13]. For
example, the 3-order anchor adjacency tensor X can be
decomposed into three matrices A ∈ RU(i)×P , B ∈ RU(j)×Q

and C ∈ R8×R and a core tensor G ∈ RP×Q×R, where
P,Q,R are the number of columns of matrices A,B,C [13]:

X =

P∑
p=1

Q∑
q=1

R∑
r=1

gpqrap ◦ bq ◦ cr = [G;A,B,C],

where ap ◦bq denotes the vector outer product of ap and bq .
Each row of A and B represents a latent topological

feature vector of users in U (i) and U (j) respectively [21].
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Method HOSVD introduced in [13] is applied to achieve these
decomposed matrices in this paper.

E. Class Imbalance Link Prediction

Based on the extracted features, various supervised link
prediction models [14], [37], [42] can be applied to infer the
potential anchor links across networks. As proposed in [20],
[16], conventional supervised link prediction methods [29],
can suffer from the class imbalance problem a lot. To address
the problem, two effective methods (down sampling [15] and
over sampling [4]) are applied.

Down sampling methods aim at deleting the unreliable
negative instances from the training set. In Figure 2, we show
the distributions of training links in the feature space, where
negative links can be divided into 4 different categories [15]:
(1) noisy links: links mixed in the positive links; (2) borderline
links: links close to the decision boundary; (3) redundant links:
links which are too far away from the decision boundary in
the negative region; and (4) safe links: links which are helpful
for determining the classification boundary.

Different heuristics have been proposed to remove the noisy
instances and borderline instances, which are detrimental for
the learning algorithms. In this paper, we will use the method
called Tomek links proposed in [30], [15]. For any two given
instances x1 and x2 of different labels, pair (x1,x2) is called
a tomek link if there exists no other instances, e.g., z, such
that d(x1, z) < d(x1,x2) and d(x2, z) < d(x1,x2). Examples
that participate in Tomek links are either borderline or noisy
instances [30], [15]. As to the redundant instances, they will
not harm correct classifications as their existence will not
change the classification boundary but they can lead to extra
classification costs. To remove the redundant instances, we
propose to create a consistent subset C of the training set, e.g.,
S [15]. Subset C is consistent with S if classifiers built with
C can correctly classify instances in S. Initially, C consists
of all positive instances and one randomly selected negative
instances. A classifier, e.g., kNN , built with C is applied to
S, where instances that are misclassified are added into C. The
final set C contains the safe links.

Another method to overcome the class imbalance problem is
to over sample the minority class. Many over sampling meth-
ods have been proposed, e.g., over sampling with replacement,

over sampling with “synthetic” instances [4]: the minority
class is over sampled by introducing new “synthetic” examples
along the line segment joining m of the k nearest minority
class neighbors for each minority class instances. Parameter k
is usually set as 5, while the value of m can be determined
according to the ratio to over sample the minority class. For
example, if the minority class need to be over sampled 200%,
then m = 2. The instance to be created between a certain
example x and one of its nearest neighbor y can be denoted
as x + θT (x − y), where x and y are the feature vectors of
two instances and θT is the transpose of a coefficient vector
containing random numbers in range [0, 1].

IV. ANCHOR LINK PRUNING WITH GENERIC STABLE
MATCHING

In this section, we will introduce the anchor link pruning
methods in details, which include (1) candidate pre-pruning,
(2) brief introduction to the traditional stable matching, and
(3) the generic stable matching method proposed in this paper,
which generalizes the concept of traditional stable matching
through both self matching and partial stable matching.

A. Candidate Pre-Pruning

Across two partially aligned social networks, users in a
certain network can have a large number of potential anchor
link candidates in the other network, which can lead to
great time and space costs in predicting the anchor links.
The problem can be even worse when the networks are of
large scales, e.g., containing million even billion users, which
can make the partial network alignment problem unsolvable.
To shrink size of the candidate set, we propose to conduct
candidate pre-pruning of links in the test set with users’ profile
information (e.g., names and hometown).

As shown in Figure 3, in the given input test set, users
are extensively connected with all their potential partners in
other networks via anchor links. For each users, we propose
to prune their potential candidates according to the following
heuristics:
• profile pre-pruning: users’ profile information shared

across partially aligned social networks, e.g., Foursquare
and Twitter, can include username and hometown [34].
Given an anchor link (u

(i)
l , u

(j)
m ) ∈ L, if the username

and hometown of u(i)
l and u(j)

m are totally different, e.g.,
cosine similarity scores are 0, then link (u

(i)
l , u

(j)
m ) will

be pruned from test set L.
• EAAF pruning: based on the explicit anchor adjacency

tensor X extracted in Section III, for a given link
(u

(i)
l , u

(j)
m ) ∈ L, if its extracted explicit anchor adjacency

features are all 0, i.e., X (l,m, x) = 0, x ∈ {1, 2, · · · , 8},
then link (u

(i)
l , u

(j)
m ) will be pruned from test set L.

B. Traditional Stable Matching

Meanwhile, as proposed in [14], the one-to-one constraint of
anchor links across fully aligned social networks can be met by
pruning extra potential anchor link candidates with traditional
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stable matching. In this subsection, we will introduce the
concept of traditional stable matching briefly.

Given the user sets U (1) and U (2) of two partially aligned
social networks G(1) and G(2), each user in U (1)(or U (2)) has
his preference over users in U (2)(or U (1)). Term vjP

(1)
ui vk is

used to denote that ui ∈ U (1) prefers vj to vk for simplicity,
where vj , vk ∈ U (2) and P

(1)
ui is the preference operator of

ui ∈ U (1). Similarly, we can use term uiP
(2)
vj uk to denote that

vj ∈ U (2) prefers ui to uk in U (1) as well.
Definition 17 (Matching): Mapping µ : U (1) ∪U (2) → U (1) ∪
U (2) is defined to be a matching iff (1) |µ(ui)| = 1,∀ui ∈ U (1)

and µ(ui) ∈ U (2); (2) |µ(vj)| = 1,∀vj ∈ U (2) and µ(vj) ∈
U (1); (3) µ(ui) = vj iff µ(vj) = ui.
Definition 18 (Blocking Pair): A pair (ui, vj) is a a blocking
pair of matching µ if ui and vj prefers each other to their
mapped partner, i.e., (µ(ui) 6= vj) ∧ (µ(vj) 6= ui) and
(vjP

(1)
ui µ(ui)) ∧ (uiP

(2)
vj µ(vj)).

Definition 19 (Stable Matching): Given a matching µ, µ is
stable if there is no blocking pair in the matching results [5].

As introduced in [14], the stable matching can be obtained
with the Gale-Shapley algorithm proposed in [9].

C. Generic Stable Matching

Stable matching based method proposed in [14] can only
work well in fully aligned social networks. However, in the real
world, few social networks are fully aligned and lots of users
in social networks are involved in one network only, i.e., non-
anchor users, and they should not be connected by any anchor
links. However, traditional stable matching method cannot
identify these non-anchor users and remove the predicted
potential anchor links connected with them. To overcome such
a problem, we will introduce the generic stable matching to
identify the non-anchor users and prune the anchor link results
to meet the one− to− one≤ constraint.

In PNA, we introduce a novel concept, self matching, which
allows users to be mapped to themselves if they are discovered
to be non-anchor users. In other words, we will identify the
non-anchor users as those who are mapped to themselves in
the final matching results.
Definition 20 (Self Matching): For the given two partially
aligned networks G(1) and G(2), user ui ∈ U (1), can have his
preference P (1)

ui over users in U (2)∪{ui} and ui preferring ui
himself denotes that ui is an non-anchor user and prefers to
stay unconnected, which is formally defined as self matching.

Users in one social network will be matched with either
partners in other social networks or themselves according to
their preference lists (i.e., from high preference scores to
low preference scores). Only partners that users prefer over
themselves will be accepted finally, otherwise users will be
matched with themselves instead.
Definition 21 (Acceptable Partner): For a given matching µ :
U (1) ∪ U (2) → U (1) ∪ U (2), the mapped partner of users ui ∈
U (1), i.e., µ(ui), is acceptable to ui iff µ(ui)P

(1)
ui ui.

To cut off the partners with very low preference scores, we
propose the partial matching strategy to obtain the promising
partners, who will participate in the matching finally.
Definition 22 (Partial Matching Strategy): The partial match-
ing strategy of user ui ∈ U (1), i.e., Q(1)

ui , consists of the first
K the acceptable partners in ui’s preference list P (1)

ui , which
are in the same order as those in P (1)

ui , and ui in the (K+1)th
entry of Q(1)

ui . Parameter K is called the partial matching rate
in this paper.

An example is given in Figure 4, where to get the top 2
promising partners for the user, we place the user himself at
the 3rd cell in the preference list. All the remaining potential
partners will be cut off and only the top 3 users will participate
in the final matching.

Based on the concepts of self matching and partial matching
strategy, we define the concepts of partial stable matching and
generic stable matching as follow.
Definition 23 (Partial Stable Matching): For a given match-
ing µ, µ is (1) rational if µ(ui)Q

(1)
ui ui,∀ui ∈ U (1) and

µ(vj)Q
(2)
vj vj ,∀vj ∈ U (2), (2) pairwise stable if there exist

no blocking pairs in the matching results, and (3) stable if it
is both rational and pairwise stable.
Definition 24 (Generic Stable Matching): For a given match-
ing µ, µ is a generic stable matching iff µ is a self matching



TABLE I
PROPERTIES OF THE HETEROGENEOUS NETWORKS

network

property Twitter Foursquare

# node
user 5,223 5,392
tweet/tip 9,490,707 48,756
location 297,182 38,921

# link
friend/follow 164,920 76,972
write 9,490,707 48,756
locate 615,515 48,756

or µ is a partial stable matching.
As example of generic stable matching is shown in the

bottom two plots of Figure 3. Traditional stable matching can
prune most non-existing anchor links and make sure the results
can meet one-to-one constraint. However, it preserves the
anchor links (Rebecca, Becky) and (Jonathan, Jon), which are
connecting non-anchor users. In generic stable matching with
parameter K = 1, users will be either connected with their
most preferred partner or stay unconnected. Users “William”
and “Wm” are matched as link (William, Wm) has the highest
score. “Rebecca” and “Jonathan” will prefer to stay uncon-
nected as their most preferred partner “Wm” is connected with
“William” already. Furthermore, “Becky” and “Jon” will stay
unconnected as their most preferred partner “Rebecca” and
“Jonathan” prefer to stay unconnected. In this way, generic
stable matching can further prune the non-existing anchor links
(Rebecca, Becky) and (Jonathan, Jon).

The truncated generic stable matching results can be
achieved with the Generic Gale-Shapley algorithm as given
in Algorithm 1.

V. EXPERIMENTS

To demonstrate the effectiveness of PNA in predicting an-
chor links for partially aligned heterogeneous social networks,
we conduct extensive experiments on two real-world hetero-
geneous social networks: Foursquare and Twitter. This section
includes three parts: (1) dataset description, (2) experiment
settings, and (3) experiment results.

A. Dataset Description

The datasets used in this paper include: Foursquare and
Twitter, which were crawled during November 2012 [14], [36],
[37], [42]. More detailed information about these two datasets
is shown in Table I and in [14], [36], [37], [42]. The number
of anchor links crawled between Foursquare and Twitter is
3, 388 and 62.83% Foursquare users are anchor users.

B. Experiment Settings

In this part, we will talk about the experiment settings in de-
tails, which includes: (1) comparison methods, (2) evaluation
methods, and (3) experiment setups.

Algorithm 1 Generic Gale-Shapley Algorithm

Input: user sets of aligned networks: U (1) and U (2).
classification results of potential anchor links in L
known anchor links in A(1,2)

truncation rate K
Output: a set of inferred anchor links L′

1: Initialize the preference lists of users in U (1) and U (2) with
predicted existence probabilities of links in L and known
anchor links in A(1,2), whose existence probabilities are
1.0

2: construct the truncated strategies from the preference lists

3: Initialize all users in U (1) and U (2) as free
4: L′ = ∅
5: while ∃ free u(1)

i in U (1) and u(1)
i ’s truncated strategy is

non-empty do
6: Remove the top-ranked account u(2)

j from u
(1)
i ’s trun-

cated strategy
7: if u(2)

j ==u(1)
i then

8: L′ = L′ ∪ {(u(1)
i , u

(1)
i )}

9: Set u(1)
i as stay unconnected

10: else
11: if u

(2)
j is free then

12: L′ = L′ ∪ {(u(1)
i , u

(2)
j )}

13: Set u(1)
i and u(2)

j as occupied
14: else
15: ∃u(1)

p that u(2)
j is occupied with.

16: if u
(2)
j prefers u(1)

i to u(1)
p then

17: L′ = (L′ − {(u(1)
p , u

(2)
j )}) ∪ {(u(1)

i , u
(2)
j )}

18: Set u(1)
p as free and u(1)

i as occupied
19: end if
20: end if
21: end if
22: end while

1) Comparison Methods: The comparison methods used in
the experiments can be divided into the following 4 categories:
Methods with Generic Stable Matching:
• PNAOMG: PNAOMG (PNA with Over sampling &

Generic stable Matching) is the method proposed in this
paper, which consists of two steps: (1) class imbalance
link prediction with over sampling, and (2) candidate
pruning with generic stable matching.

• PNADMG: PNADMG (PNA with Down sampling &
Generic stable Matching) is another method proposed
in this paper, which consists of two steps: (1) class
imbalance link prediction with down sampling, and (2)
candidate pruning with generic stable matching.

Methods with Traditional Stable Matching
• PNAOM: PNAOM (PNA with Over sampling & tradi-

tional stable Matching) is identical to PNAOMG except
that in the second step, PNAOM applies the traditional
stable matching [9], [14].
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Fig. 5. AUC of different class imbalance link prediction methods.

• PNADM: PNADM (PNA with Down sampling & tradi-
tional stable Matching) is identical to PNADMG except
that in the second step, PNADM applies the traditional
stable matching [9], [14].

Class Imbalance Anchor Link Prediction:
• PNAO: PNAO (PNA with Over sampling) is the link

prediction method with over sampling to overcome the
class imbalance problem and has no matching step.

• PNAD: PNAD (PNA with Down sampling) is the link
prediction method with down sampling to overcome the
class imbalance problem and has no matching step.

Existing Network Anchoring Methods
• MNA: MNA (Multi-Network Anchoring) is a two-phase

method proposed in [14] which includes: (1) supervised
link prediction without addressing class imbalance prob-
lem; (2) traditional stable matching [9], [14].

• MNA no: MNA no (MNA without one-to-one constraint)
is the first step of MNA proposed in [14] which can pre-
dict anchor links without addressing the class imbalance
problem and has no matching step.

2) Evaluation Metrics: The output of different link pre-
diction methods can be either predicted labels or confidence
scores, which are evaluated by Accuracy, AUC, F1 in the
experiments.

3) Experiment Setups: In the experiment, initially, a fully
aligned network containing 3000 users in both Twitter and
Foursquare is sampled from the datasets. All the existing
anchor links are grouped into the positive link set and all the
possible non-existing anchor links are used as the potential
link set. Certain number of links are randomly sampled
from the potential link set as the negative link set, which
is controlled by parameter θ. Parameter θ represents the
#negative
#positive rate, where θ = 1 denotes the class balance case,
i.e., #positive equals to #negative; θ = 50 represents that
case that negative instance set is 50 times as large as that of the
positive instance set, i.e., #negative = 50×#positive. In the
experiment, θ is chosen from {1, 2, 3, 4, 5, 10, 20, 30, 40, 50}.
Links in the positive and negative link sets are partitioned

into two parts with 10-fold cross validation, where 9 folds
are used as the training set and 1 fold is used as the test set.
To simulate the partial alignment networks, certain positive
links are randomly sampled from the positive training set as
the final positive training set under the control of parameter η.
η is chosen from {0.1, 0.2, · · · , 1.0}, where η = 0.1 denotes
that the networks are 10% aligned and η = 1.0 shows that the
networks are fully aligned. With links in the positive training
set, anchor adjacency tensor based features and the latent
feature vectors are extracted from the network to build link
prediction modelM. In building modelM, over sampling and
under sampling techniques are applied and the sampling rate is
determined by parameter σ ∈ {0.0, 0.1, 0.2, · · · , 1.0}, where
σ = 0.3 denotes that 0.3×(#negative−#positive) negative
links are randomly removed from the negative link set in under
sampling; or 0.3×(#negative−#positive) positive links are
generated and added to the positive link set in over sampling.
Before applying modelM to the test set, pre-pruning process
is conducted on the test set in advance. Based on the prediction
results of model M on the test set, post-pruning with generic
stable matching is applied to further prune the non-existent
candidates to ensure that the final prediction results across
the partially aligned networks can meet the one− to− one≤
constraint controlled by the partial matching parameter K.

C. Experiment Results

In this part, we will give the experiment results of all
these comparison methods in addressing the partial network
alignment problem. This part includes (1) analysis of sampling
methods in class imbalance link prediction; (2) performance
comparison of different link prediction methods; and (3)
parameter analysis.

1) Analysis of Sampling Methods: To examine whether
sampling methods can improve the prediction performance on
the imbalanced classification problem or not, we also compare
PNAO, PNAD with MNA no and the results are given in
Figure 5, where we fix θ as 10 but change η with values in
{0.1, 0.2, · · · , 1.0} and compare the AUC achieved by PNAO,
PNAD and MNA no. We can observe that the AUC values of
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Fig. 6. F1, Accuracy of PNAOMG and PNADMG with different partial matching rates.

all these three methods increases with the increase of η but
PNAO and PNAD perform consistently better than MNA no.
In Figure 5(b), we fix η as 0.6 but change θ with values in
{1, 2, 3, 4, 5, 10, 20, 30, 40, 50} and compare the AUC of
PNAO, PNAD and MNA no. As shown in Figure 5(b), the
performance of PNAO, PNAD and MNA no can all varies
slightly with θ changing from 1 to 50 and PNAO, PNAD can
achieve better performance than MNA no consistently.

2) Comparison of Different Link Prediction Methods:
Meanwhile, as generic stable matching based post pruning
can only output the labels of potential anchor links in the test
set, we also evaluate all these methods by comparing their
Accuracy and F1 score Tables II-III. In Table II, we fix θ as
10, K as 5 but change η with values in {0.1, 0.2, · · · , 1.0}.
Table II has two parts. The upper part of Table II shows the
Accuracy achieved by all the methods with various η, and the
lower part shows the F1 score. Generally, the performance of
all comparison methods rises as η increases. In the upper part,
methods PNAOMG and PNADMG can consistently perform
better than all other comparison methods for different η. For
example, when η = 0.5, the Accuracy achieved by PNAOMG
is higher than PNAOM by 3.45%, higher than MNA by 6.0%,
higher than PNAO by 7.51% and higher than MNA no by
7.75%; meanwhile, the Accuracy achieved by PNADMG is
higher than PNADM, MNA, PNAD and MNA no as well. The
advantages of PNAOMG and PNADMG over other comparison
methods are more obvious under the evaluation of F1 as in

class imbalance settings, Accuracy is no longer an appropriate
evaluation metric [3]. For example, when η = 0.5, the F1
achieved by PNAOMG is about 13.25% higher than PNAOM,
24% higher than MNA, 101.6% higher than PNAO and 165%
higher than MNA no; so is the case for method PNADMG.
The experiment results show that PNAOMG and PNADMG can
work well with datasets containing different ratio of anchor
links across the networks. Similar results can be obtained
from Table III, where we fix η = 0.6, K as 5 but change
θ with values in {1, 2, 3, 4, 5, 10, 20, 30, 40, 50}. It shows that
PNAOMG and PNADMG can effectively address the class
imbalance problem.

The fact that (1) PNAOMG can outperform PNAOM
(PNADMG outperforms PNADM) shows that generic stable
matching can work well in dealing with partially aligned
social networks; (2) PNAOM can beat PNAO (and PNADM
beats PNAD) means that stable matching can achieve very
good post-pruning results; (3) PNAOM and PNADM can
perform better than MNA (or PNAO and PNAD can achieve
better results than MNA no) means that sampling methods can
overcome the class imbalance problem very well.

3) Analysis of Partial Matching Rate: In the generic sta-
ble matching, only top K anchor link candidates will be
preserved. In this part, we will analyze the effects of pa-
rameter K on the performance of PNAOMG and PNADMG.
Figure 6 gives the results (both Accuracy and F1) of
PNAOMG and PNADMG by setting parameter K with values



TABLE II
PERFORMANCE COMPARISON OF DIFFERENT METHODS FOR PARTIAL NETWORK ALIGNMENT WITH DIFFERENT NETWORK ALIGNMENT RATES.

anchor link sampling rate η

Methods 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

ACC

PNAOMG 0.964 0.966 0.973 0.967 0.987 0.989 0.981 0.988 0.989 0.990
PNADMG 0.960 0.974 0.961 0.976 0.983 0.975 0.982 0.989 0.986 0.990

PNAOM 0.942 0.938 0.948 0.945 0.954 0.960 0.970 0.968 0.983 0.981
PNADM 0.940 0.951 0.949 0.929 0.949 0.947 0.969 0.966 0.983 0.981

MNA 0.917 0.918 0.922 0.922 0.931 0.937 0.940 0.943 0.949 0.971

PNAO 0.905 0.907 0.915 0.915 0.918 0.927 0.926 0.925 0.929 0.921
PNAD 0.905 0.908 0.911 0.912 0.915 0.926 0.923 0.925 0.929 0.923

MNA no 0.895 0.899 0.901 0.907 0.916 0.921 0.922 0.924 0.919 0.922

F1

PNAOMG 0.280 0.375 0.442 0.496 0.615 0.717 0.776 0.843 0.941 0.965
PNADMG 0.283 0.374 0.412 0.481 0.589 0.658 0.783 0.848 0.925 0.972

PNAOM 0.230 0.318 0.384 0.452 0.543 0.638 0.723 0.824 0.916 0.963
PNADM 0.239 0.324 0.369 0.424 0.526 0.593 0.716 0.812 0.919 0.963

MNA 0.211 0.267 0.375 0.420 0.496 0.578 0.705 0.782 0.899 0.943

PNAO 0.014 0.054 0.211 0.210 0.305 0.402 0.413 0.385 0.428 0.438
PNAD 0.010 0.048 0.131 0.165 0.257 0.380 0.365 0.367 0.405 0.438

MNA no 0.004 0.021 0.042 0.067 0.232 0.322 0.339 0.346 0.360 0.380

TABLE III
PERFORMANCE COMPARISON OF DIFFERENT METHODS FOR PARTIAL NETWORK ALIGNMENT WITH DIFFERENT NEGATIVE POSITIVE RATES.

negative positive rate θ

Measure Methods 1 2 3 4 5 10 20 30 40 50

ACC

PNAOMG 0.941 0.900 0.903 0.904 0.905 0.989 0.995 0.995 0.998 0.997
PNADMG 0.920 0.917 0.903 0.913 0.893 0.975 0.994 0.998 0.997 0.997

PNAOM 0.934 0.898 0.899 0.882 0.898 0.960 0.975 0.981 0.992 0.995
PNADM 0.916 0.914 0.892 0.910 0.887 0.947 0.977 0.981 0.990 0.990

MNA 0.914 0.863 0.884 0.886 0.878 0.937 0.966 0.970 0.978 0.986

PNAO 0.706 0.795 0.834 0.849 0.880 0.927 0.958 0.970 0.976 0.980
PNAD 0.752 0.812 0.836 0.865 0.875 0.926 0.955 0.968 0.976 0.980

MNA no 0.714 0.781 0.825 0.839 0.873 0.921 0.953 0.968 0.975 0.980

F1

PNAOMG 0.943 0.870 0.835 0.805 0.776 0.717 0.608 0.552 0.565 0.524
PNADMG 0.926 0.890 0.834 0.821 0.754 0.658 0.602 0.577 0.548 0.533

PNAOM 0.936 0.867 0.832 0.772 0.769 0.638 0.550 0.470 0.438 0.366
PNADM 0.923 0.887 0.822 0.819 0.747 0.593 0.563 0.468 0.419 0.405

MNA 0.887 0.800 0.790 0.760 0.694 0.578 0.508 0.397 0.346 0.329

PNAO 0.600 0.609 0.553 0.515 0.492 0.402 0.294 0.251 0.131 0.051
PNAD 0.687 0.633 0.569 0.528 0.455 0.380 0.230 0.131 0.093 0.067

MNA no 0.575 0.542 0.526 0.483 0.447 0.322 0.204 0.105 0.075 0.041

in {1, 2, 3, 4, 5, 10, 20, 30, 40, 50}.

In Figures 6(a)-6(b), parameters θ and η are fixed as 5
and 0.4 respectively. From the results, we observe that both
PNAOMG and PNADMG can perform very well when K is
small and the best is obtained at K = 1. It shows that the
anchor link candidates with the highest confidence predicted
by PNAO and PNAD are the optimal network alignment
results when θ and η are low. In Figures 6(c)-6(d), we set
η as 0.9 and θ as 50 (i.e., the networks contain more anchor
links and the training/test sets become more imbalance), we
find that the performance of both PNAOMG and PNADMG
increases first and then decreases and finally stay stable as K
increases, which shows that the optimal anchor link candidates
are those within the top K candidate set rather than the one

with the highest confidence as the training/test sets become
more imbalance.

In addition, the partial matching strategy can shrink the
preference lists of users a lot, which can lead to lower time
cost as shown in Figure 7 especially for the smaller K values
which lead to better accuracy as shown in Figure 6.

Results in all these figures show that generic stable match-
ing can effectively prune the redundant candidate links and
significantly improve the prediction results.

VI. RELATED WORKS

Aligned social network studies have become a hot research
topic in recent years. Kong et al. [14] are the first to propose
the anchor link prediction problem in fully aligned social
networks. Zhang et al. [36], [37], [42], [40] propose to
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predict links for new users and new networks by transferring
heterogeneous information across aligned social networks. A
comprehensive survey about link prediction problems across
multiple social networks is available in [38]. In addition to
link prediction problems, Jin and Zhang et al. [12], [39], [41]
introduce the community detection problems across aligned
networks and Zhan et al. [35] study the information diffusion
across aligned social networks.

Meta path first proposed by Sun et al. [26] has become a
powerful tool, which can be applied in either in link prediction
problems [26], [27] or clustering problems [28], [25]. Sun et al.
[26] propose to predict co-author relationship in heterogeneous
bibliographic networks based on meta path. Sun et al. extend
the link prediction model to relationship prediction model
based on meta path in [27]. Sun et al. [28] propose to calculate
the similarity scores among users based on meta path in
bibliographical network. Sun et al. [25] also apply meta path
in clustering problem of heterogeneous information networks
with incomplete attributes.

Tensor has been widely used in social networks studies.
Moghaddam et al. [21] propose to apply extended tensor
factorization model for personalized prediction of review
helpfulness. Liu et al. [17] present a tensor-based framework
for integrating heterogeneous multi-view data in the context
of spectral clustering. A more detailed tutorial about tensor
decomposition and applications is available in [13].

Class imbalance problems in classification can be very
common in real-world applications. Chawla et al. [4] propose a
technique for over-sampling the minority class with generated
new synthetic minority instances. Kubat et al. [15] propose to
address the class imbalance problems with under sampling of
the majority cases in the training set. A systematic study of
the class imbalance problem is available in [11].

College admission problem [23] and stable marriage prob-
lem [10] have been studied for many years and lots of works
have been done in the last century. In recent years, some new
papers have come out in these areas. Sotomayor et al. [24]
propose to analyze the stability of the equilibrium outcomes
in the admission games induced by stable matching rules.
Ma [18] analyzes the truncation in stable matching and the

small core in nash equilibrium in college admission problems.
Floréen et al. [8] propose to study the almost stable matching
by truncating the Gale-Shapley algorithm.

VII. CONCLUSION

In this paper, we study the partial network alignment
problem across partially aligned social networks. To address
the challenges of the studied problem, a new method PNA is
proposed in this paper. PNA can extract features for anchor
links based on a set of anchor meta paths and overcome
the class imbalance problem with over sampling and down
sampling. PNA can effectively prune the non-existing anchor
links with generic stable matching to ensure the results can
meet the one − to − one≤ constraint. Extensive experiments
done on two real-world partially aligned networks show
the superior performance of PNA in addressing the partial
network alignment problem.
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